

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 176 (2003) 27-32

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Synthesis, X-ray crystal structure and vibrational spectroscopy of the acidic pyrophosphate $KMg_{0.5}H_2P_2O_7 \cdot H_2O$

M. Harcharras,^a F. Capitelli,^{b,*} A. Ennaciri,^a K. Brouzi,^a A.G.G. Moliterni,^b G. Mattei,^c and V. Bertolasi^d

^a Laboratory of Spectroscopy, Department of Chemistry, Faculty of Sciences, University Ibn Tofail; B.P.133, 14000 Kenitra, Morocco

^bDipartimento Geomineralogico, Istituto di Cristallografia (IC-CNR), Via Orabona 4, 70125 Bari, Italy

^c Istituto di Metodologie Inorganiche e dei Plasmi (IMIP-CNR), Area della ricerca di Roma-Montelibretti, Via Salaria Km 29,300,

C.P. 10-00016 Monterotondo Stazione Roma, Roma, Italy

^d Dipartimento di Chimica and Centro di Strutturistica Diffrattometrica, Università di Ferrara, Via Borsari 46, 44100 Ferrara, Italy

Received 4 April 2003; received in revised form 4 June 2003; accepted 6 June 2003

Abstract

The hydrated potassium hemimagnesium dihydrogen pyrophosphate $\text{KMg}_{0.5}\text{H}_2\text{P}_2\text{O}_7 \cdot \text{H}_2\text{O}$ was synthesized. It crystallizes in the triclinic system, space group $P\overline{1}$ (n. 2), Z = 2, with the following unit-cell parameters: a = 6.8565(2) Å, b = 7.3621(3) Å, c = 7.6202(3) Å, $\alpha = 81.044(2)^\circ$, $\beta = 72.248(2)^\circ$, $\gamma = 83.314(3)^\circ$, V = 360.90(2) Å³. The structure was obtained by single-crystal X-ray diffractometry, and a full-matrix least-squares refinement based on F^2 gave a final *R* index of = 0.0368 (wR = 0.0975), utilizing 1446 observed reflections with $I > 2\sigma(I)$. The crystal packing consists in a three-dimensional network made by layers parallel to *ab* plane of PO₄ double tetrahedra and MgO₆ octahedra, linked by hydrogen bonds, while K atoms form complex coordination within cavities between tetrahedra and octahedra. The dihydro-pyrophosphate anion (H₂P₂O₇)²⁻ shows bent eclipsed conformation and the Mg²⁺ ion lies on inversion center. No coincidences observed between most of infrared and Raman spectral bands confirmed the centrosymmetric structure of the title compound; the vibrational spectra point to a bent POP bridge angle. \mathbb{C} 2003 Elsevier Inc. All rights reserved.

Keywords: Pyrophosphate; X-ray single-crystal diffractometry; Ci symmetry; Hydrogen bond; Raman spectroscopy; Infrared spectroscopy

1. Introduction

Inorganic acidic pyrophosphates hold important biochemical roles, such as inhibitors of human immunodeficiency enzymes [1], and as inhibitors of the formation and dissolution of apatite crystals [2]; more, they are used for piezoelectrics, luminescent, ceramic and solid state laser applications [3]. Despite such compounds have been studied for 50 years [4–9], their crystal chemistry lacks systematic structural and vibrational investigations. Among the different classes of such compounds, we quote the dicationic $ABPy \cdot nH_2O$ family, where A is a monovalent cation, B is a mono-, di- or trivalent cation and Py is the $(H_2P_2O_7)^{2-}$ acidic pyrophosphate group. Detailed studies on structure determinations of such compounds are available in

crystallography literature on KAl($H_2P_2O_7$)₂ [10], K₃Na($H_2P_2O_7$)₂ [11], K₂Co($H_2P_2O_7$)₂ · 2H₂O [12], but less common are crystal investigations coupled with vibrational spectroscopy. Recently, we have analyzed the acidic pyrophosphate Na₄Mg₂($H_2P_2O_7$)₄ · 8H₂O [13], focusing on the polyhedra coordination and the vibrational study (both Raman and infrared). In the present paper we report the crystal structure of the new dicationic acidic pyrophosphate KMg_{0.5}H₂P₂O₇ · H₂O, discussing about the X-ray crystal structure and the results of infrared and Raman vibrational spectroscopy.

2. Experimental

2.1. Synthesis

The aqueous solution of magnesium chloride hexahydrate $MgCl_2 \cdot 6H_2O(0.1 \text{ M})$ was added dropwise to the

^{*}Corresponding author. Fax: +39-080-544-2591.

E-mail address: francesco.capitelli@ic.cnr.it (F. Capitelli).

^{0022-4596/\$ -} see front matter \odot 2003 Elsevier Inc. All rights reserved. doi:10.1016/S0022-4596(03)00339-6

anhydrous tetrapotassium pyrophosphate $K_4P_2O_7$ (0.1 M), prepared by dehydration of K_2HPO_4 at 600°C for 6 h. The pH of mixture of the resulting solution was controlled with hydrochloric acid HCl (0.5 M), afterwards it was left at room temperature, and crystals appeared within after 3 days.

2.2. X-ray crystallography

X-ray data were collected at 293 K on a colourless irregular block crystal of dimension $0.08 \times 0.21 \times$ 0.38 mm³ using a Nonius Kappa CCD area detector diffractometer, with MoK α radiation ($\lambda = 0.71070$ Å), in ϕ and ω scans mode. For unit-cell refinement 1055 reflections with $1.00^{\circ} < \theta < 27.88^{\circ}$ were used: the crystal is triclinic, space group $P\overline{1}$ (Z = 2), a = 6.8565(2) A, b = 7.3621(3) Å, c = 7.6202(3) Å, $\alpha = 81.044(2)^{\circ}$, $\beta =$ 72.248(2)°, $\gamma = 83.314(3)°$, $V = 360.90(2) \text{ Å}^3$, $D_c = 2.257 \text{ g cm}^{-3}$, F(000) = 246. 2415 reflections (1527) unique) were collected ($R_{int} = 0.033$), and omission of intensities with $I \leq 2\sigma(I_{obs})$ gave 1446 observed reflections employed for the analysis. Data were corrected for Lorentz and polarization effects. The structure was solved through the direct method procedure of SIR97 [14] and refined by a full-matrix least-squares technique based on F^2 , SHELXL-97 [15]. The final formula of the compound resulted $KMg_{0.5}H_2P_2O_7 \cdot H_2O$. The nonhydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were localized through difference-Fourier map and refined isotropically. The final cycle of least-squares refinement included 122 parameters (weighting scheme applied: $w^{-1} = [\sigma^2(F_o^2) +$ $(0.0422P)^2 + 0.2707P$, with $P = [(F_o^2 + 2F_c^2)/3]$. The final residuals were R = 0.0368 and wR = 0.0975 $(I > 2\sigma(I_{obs}))$, while GOF was 1.107. Crystal data and structure refinement are reported in Table 1, while fractional atomic coordinates and equivalent isotropic parameters are reported in Table 2.¹

2.3. FT-IR spectroscopy

The infrared measurements were performed by a FT-IR Biorad spectrometer with resolution of 2 cm^{-1} in the spectral range 400–4000 cm⁻¹, adopting the KBr pellets technique (1 mg sample per 400 mg KBr).

2.4. Raman spectroscopy

Micro-Raman measurements were performed in back-scattering geometry at room temperature by using

Table 1							
Crystal (data and	structure	refinement	for I	KMgo cl	HapaOr	H_{0}

Empirical formula	$H_4KMg_{0.5}O_8P_2$
Formula weight	$245.23 \mathrm{g}\mathrm{mol}^{-1}$
Temperature	293(2) K
Wavelength	0.71069 Å
Crystal system	Triclinic
Space group	<i>P</i> 1 (n. 2)
Unit-cell dimensions	a = 6.8565(2) Å
	b = 7.3621(3) Å
	c = 7.6202(3) Å
	$\alpha = 81.044(2)^{\circ}$
	$\beta = 72.248(2)^{\circ}$
	$\gamma = 83.314(3)^{\circ}$
V	360.90(2) Å ³
Formula units per cell	2
Calculated density	$2.257 \mathrm{g cm^{-3}}$
μ	$1.227 \mathrm{mm^{-1}}$
F(000)	246
Crystal size	$0.38 \times 0.21 \times 0.08 \text{ mm}^3$
θ range for data collection	2.81-27.82°
Range in <i>hkl</i>	$0 \leqslant h \leqslant 8, -9 \leqslant k \leqslant 9, -9 \leqslant l \leqslant 9$
Reflections collected	2415
Reflections independent	1527 ($R_{int} = 0.033$)
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	1446/0/122
Goodness-of-fit on F^2	1.107
Final <i>R</i> indices $[I > 2\sigma(I)]$	R = 0.0368, wR = 0.0975
R indices (all data)	R = 0.0388, wR = 0.0995
Largest diff. peak and hole	0.558 and $-0.626 \text{e}\text{\AA}^{-3}$

Table 2

Atomic coordinates and equivalent isotropic displacement parameters for $KMg_{0.5}(H_2P_2O_7)\cdot H_2O$

Atom	X	у	Ζ	$U_{\rm iso}{}^{\rm a}$
K1	0.38726(9)	-0.23635(8)	0.20817(8)	0.0365(2)
Mg1	0	0	0	0.0168(2)
P1	-0.25198(7)	0.31296(7)	0.25806(7)	0.0172(2)
P2	0.17488(7)	0.22789(7)	0.25150(7)	0.0177(2)
01	-0.2375(2)	0.1755(2)	0.1288(2)	0.0227(3)
O2	-0.4324(3)	0.2858(2)	0.4384(2)	0.0253(4)
O3	-0.2520(3)	0.5108(2)	0.1709(2)	0.0269(4)
O4	-0.0645(2)	0.2753(2)	0.3480(2)	0.0243(4)
O5	0.1991(2)	0.1063(2)	0.1057(2)	0.0221(3)
O6	0.2604(2)	0.1495(2)	0.4077(2)	0.0244(3)
O7	0.2666(3)	0.4160(2)	0.1609(2)	0.0273(4)
O8	0.0560(3)	0.2032(2)	-0.2321(2)	0.0269(4)
H2	-0.507(7)	0.249(7)	0.418(6)	0.073(15)
H7	0.248(6)	0.451(6)	0.041(6)	0.070(12)
H8a	0.119(5)	0.186(5)	-0.338(5)	0.040(9)
H8b	0.096(6)	0.296(5)	-0.216(5)	0.050(10)

^a Equivalent isotropic U is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

a Dilor XY triple spectrometer with a liquid nitrogen cooled charge coupled device (CCD) detector and an adapted Olympus microscope. The spectra were excited with an Ar^+ laser (514.5 nm, 3 mW) and focused onto a spot of 2 μ m in diameter. The scattered light was not analyzed in polarization; spectral resolution was

¹Further details of the crystal structure investigation can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; mailto: crysdata@fiz-karlsruhe.de) on quoting the depository number CSD-412869.

 0.5 cm^{-1} ; lines of neon lamp were used for frequency scale calibration.

3. Results and discussion

3.1. X-ray crystal structure

The crystal packing of the title compound consists of layers parallel to *ab* plane formed by MgO₆ octahedra sharing four vertices with PO₃OH tetrahedra (Fig. 1). These layers, joint by K⁺ cations and strong hydrogen bonds, build up a three-dimensional infinite network. All the atoms occupy general position except Mg1 which is at special position (0,0,0) and has a site occupancy of 0.5. The Mg(H₂P₂O₇)₂ · 2H₂O moiety can be described as C_i group as a result of the Mg1 central atom lying on the inversion center, with O(waters) atoms in *trans* position with respect to the P atoms plane (Fig. 2).

Mg1 atom forms a rather regular octahedron, with O8 water oxygen in apical positions. The distortion index, $[(Cation-O)_{max}-(Cation-O)_{min}]/\langle Cation-O \rangle [16]$, is 0.023: such low value is typical of Mg octahedra [13,17], basically due to the short Mg²⁺ ionic radius (0.72 Å). K atoms are involved in a complex coordination within cavities between P-tetrahedra and Mg-octahedra. According to Dumas et al. [6], which consider the K-O threshold bond of 3.19 Å, K1 atom forms an irregular octahedron (distortion index is 0.080), with K-O contact distances ranging from 2.768 up to 2.999 Å. By the analysis of polyhedra formed by

Fig. 1. Polyhedra representation of $KMg_{0.5}H_2P_2O_7 \cdot H_2O$ on the *ab* plane (supercell $2 \times 4 \times 2$): K–O bonds are omitted for clarity.

Fig. 2. Mg(H₂P₂O₇)₂ · 2H₂O group. Ellipsoids are drawn at 50% probability level. Symmetry code: I : -x, -y, -z.

Fig. 3. Distortion index trend of coordination polyhedra [16] within inorganic dicationic dihydro-pyrophosphates [10–13]. Cation coordination number in parenthesis.

other cations in similar compounds, we can observe that the distortion increases with the ionic radius, being 0.020 for Al^{3+} octahedra (i.r. = 0.54 Å) [10], 0.031 for Co^{2+} octahedra (i. r. of 0.75 Å) [12], 0.017, 0.070 and 0.084 for Na^+ octahedra (i. r. of 1.02 Å) [11,13]; the lowest value for Na^+ octahedra (0.017) is related to the absence of water molecules in the compound $K_3Na(H_2P_2O_7)_2$, which allows a more compact crystal packing. Last, K^+ cation, because of its large dimensions (i.r. of 1.38, 1.46 and 1.51 Å for coordination numbers, respectively, 6, 7 and 8), forms more complex polyhedra, with distortion indexes extremely variable, ranging from 0.080 up to 0.199 [10-12]. The distortion index trend of coordination polyhedra within inorganic dicationic dihydro-pyrophosphates is depicted in Fig. 3 (ionic radii values from Ref. [18]). The P-O distances within PO₄ tetrahedra of H₂P₂O₇ group are comparable to those observed in dihydrogen pyrophosphate anions from

Fig. 4. Projection along the P1–P2 vector of $(H_2P_2O_7)^{2-}$ dianion showing its bent eclipsed conformation. Ellipsoids are drawn at 50% probability level.

Table 3 Selected bond lengths (Å) and angles (deg)

Bonds		Angles	
K1–O2 ^I	2.768(2)	P1O4P2	129.67(10)
K1–O5	2.807(2)		
K1–O7 ^{II}	2.886(2)	O1-P1-O3	114.78(9)
K1–O3 ^{III}	2.886(2)	O1-P1-O2	112.99(9)
K1–O8 ^{IV}	2.972(2)	O3-P1-O2	110.94(10)
K1–O1 ^{IV}	2.999(2)	O1-P1-O4	110.73(8)
		O3-P1-O4	107.24(9)
P1O1	1.494(2)	O2-P1-O4	98.87(9)
P1-O3	1.504(2)	O6-P2-O5	116.27(9)
P1-O2	1.547(2)	O6-P2-O7	109.48(9)
P1O4	1.610(2)	O5-P2-O7	110.09(9)
P2-O6	1.492(2)	O6-P2-O4	105.03(9)
P2O5	1.492(2)	O5-P2-O4	109.37(8)
P2O7	1.559(2)	O7–P2–O4	106.00(9)
P2O4	1.602(2)		
Mg1-O1 ^{IV}	2.053(1)		
Mg1-O1	2.053(1)		
Mg1–O5 ^{IV}	2.059(1)		
Mg1–O5	2.059(1)		
Mg1–O8	2.100(2)		
Mg1-O8 ^{IV}	2.100(2)		

Simmetry code: I: -x, -y, 1 - z; II: x, y - 1, z; III: x + 1, y - 1, z; IV: -x, -y, -z; V: -x, -y, 1 - z.

Table 4 Hydrogen bonding scheme: distances (Å) and angles (deg)

other structures [2,5,13]. It is possible to distinguish three types of P–O distances: P–O_b bonds (mean 1.606 Å), corresponding to the bridge oxygen, which are the longest ones, P–OH bonds (average 1.553 Å), involving hydroxyl groups, and P–O_{ext} corresponding to the external O atoms, which are the shortest ones (average 1.496 Å). The pyrophosphate anion shows bent eclipsed conformation (Fig. 4) with P1–O4–P2 angle 129.7(1)°. In Table 3 some selected bond lengths and angles are reported.

The shortest hydrogen bonds (Table 4) $[O2\cdots O6=$ 2.522(3) and $O7\cdots O3=$ 2.532(3) Å] correspond to strong interactions between hydroxyl groups and negative charged oxygens of $(H_2P_2O_7)^{2-}$ anion. These H-bonds belong to the $[O-H\cdots O]^-$ class of negative-charge assisted H-bonds [(-)CAHB] [19–20] that, when perfectly symmetric, can become very strong with $d(O\cdots O)$ values down to 2.40 Å. Accordingly, the other hydrogen bonds donated by water molecules to the same oxygens are weaker and display longer distances $[O8\cdots O3=2.794(3) \text{ and } O8\cdots O6=$ 2.742(2) Å].

3.2. Vibrational spectroscopy

The interpretation of Raman and infrared spectra (Figs. 5 and 6) can be made on the basis of characteristic vibrations of PO₂ group, P-OH bond, POP bridge and H₂O [13,21]. Band assignments for the fundamental modes of the compound are shown in Table 5. Broad bands in the region of stretching vibrations of water molecules $(2500-3800 \text{ cm}^{-1})$ show the presence of a hydrogen bonding network. The splitting of the stretching and bending vibrations of water molecules respectively in the ranges 1600-1750 and 2500-3800 cm⁻¹, in both Raman and infrared spectra, is due to different hydrogen bond strengths and correlation field effect [22]. The frequencies of vOH are localized in both Raman and infrared spectra in the range $2300-3000 \text{ cm}^{-1}$. Bending δOH are located at 1278 and 1332 cm⁻¹ in Raman, while the same vibrations are observed at 1262, 1290, 1333 and 1358 cm^{-1} in infrared spectrum.

The most intense band observed in the Raman spectrum at 1048 cm^{-1} is attributed to the symmetric terminal P–O stretching vibration of the PO₂ group. In

infulogen bonding scheme. distances (if) and ungles (deg)							
D-H		$\mathbf{D}\cdots \mathbf{A}$		$H\cdots A$		$D-H\cdots A$	
O2–H2 O7–H7 O8–H8b O8–H8a	0.67(6) 0.96(5) 0.80(4) 0.81(4)	$\begin{array}{c} O2 \cdots O6^{\mathrm{I}} \\ O7 \cdots O3^{\mathrm{II}} \\ O8 \cdots O3^{\mathrm{II}} \\ O8 \cdots O6^{\mathrm{III}} \end{array}$	2.522(3) 2.532(3) 2.794(3) 2.742(2)	$\begin{array}{c} H2\cdots O6^{I} \\ H7\cdots O3^{II} \\ H8b\cdots O3^{II} \\ H8a\cdots O6^{III} \end{array}$	1.86(5) 1.59(5) 2.00(5) 1.93(4)	$\begin{array}{c} O2-H2\cdots O6^{I} \\ O7-H7\cdots O3^{II} \\ O8-H8b\cdots O3^{II} \\ O8-H8a\cdots O6^{III} \end{array}$	170(6) 171(4) 167(4) 178(4)

Symmetry code: I: x - 1, +y, +z; II: -x, -y + 1, -z; III: x, +y, +z - 1.

Fig. 5. Raman spectrum of $KMg_{0.5}H_2P_2O_7 \cdot H_2O$.

the infrared spectrum, the most intense band observed at 1097 cm^{-1} is due to the asymmetric terminal stretching vibration of PO₂ group. For the behavior of the POP bridge vibrations, five components are observed in Raman spectrum, $v_{as}POP = 900$ and 955 cm^{-1} , $v_sPOP = 708$, 729 and 763 cm⁻¹, and five others in infrared spectrum at: $v_{as}POP = 931$, 946 and 978 cm⁻¹, $v_sPOP = 717$ and 751 cm⁻¹, which confirm the low symmetry of the cell [23]. The band located at 802 cm^{-1} in infrared spectrum is due to the vP-OH mode [21].

Table 5 Band assignments for $KMg_{0.5}H_2P_2O_7 \cdot H_2O$

RA frequency (cm ⁻¹)	IR frequency (cm ⁻¹)	Assignments
3484vwb		
3387mb	3498wb	vH_2O
3318mb	3389wb	
3281sb	3299mb	
2787vwb	2858wb	υOH
2405vwb	2383wb	
2176vwb	2201wb	
1706vwb	1687w	
1605vwb	1669wb	$\delta H_2 O$
1332vw	1385w	
1278vw	1333mb	δOH
	1290w	
	1262w	
12178		
1165m	1200s	
1121m	1179s	n POa
1115vw	1097vs	$v_{as} \mathbf{v}_2$
1080m	109773	+
10/0011	1033mb	I
1040VS	1002m	n PO
992m	994m	$v_{s1}o_2$
,,, _	,,	
955vw	978s	
900vw	946m	$v_{as}POP$
	931s	
	802w	
	751w	
763s	717w	vP–OH
729w		D POP
		0,51 01
589s	622w	
555m	577w	$ ho H_2O$
534m	544s	+
512m	520m	δPO_2
472m		+
452m	491s	ρPO_2
409s	431w	
381m		
373s		
365m		δPOP
339m		+
311m		Torsional modes
300s		+
245w		External modes

s=strong, m=medium, w=weak, v=very, b=broad, v =stretching, δ =bending, ρ =rocking.

The presence of $v_s POP$ in infrared spectrum and $v_{as}POP$ in Raman spectrum leads to a bent POP bridge angle [23]. The δPO_2 and δP -OH are observed in the 350–600 cm⁻¹ region [21]. In the Raman spectrum, the modes lying between 230–350 cm⁻¹ can be attributed to the external, torsional and POP deformation modes, the

 δ POP is observed at 300 cm⁻¹ [24] and the rocking and the PO₂ deformation modes are observed in the 300–600 cm⁻¹ region [21].

A comparison of the Raman and infrared bands shows that most of them are not coincident, which confirms a centrosymmetric structure of $KMg_{0.5}H_2P_2O_7 \cdot H_2O$.

References

- O.I. Andreeva, E.V. Efimtseva, N.S. Padyukova, S.N. Kochetkov, S.N. Mikhailov, H.B.F. Dixon, M.Y. Karpeisky, Mol. Biol. 35 (2001) 717–729.
- [2] M. Mathew, L.W. Schroeder, W.E. Brown, J. Crystallogr. Spectrosc. Res. 23 (1993) 657–661.
- [3] K. Byrappa, B.V. Umesh Dutt, A. Clearfield, M. Damodara Pojari, J. Mater. Res. 9 (1994) 1519–1525.
- [4] D.E.C. Corbridge, Acta Crystallogr. 10 (1957) 85.
- [5] R.L. Collin, M. Willis, Acta Crystallogr. B 27 (1971) 291-302.
- [6] Y. Dumas, J.L. Galigne, J. Falgueirettes, Acta Crystallogr. B 29 (1973) 1623–1630.
- [7] A. Durif, Crystal Chemistry of Condensed Phosphates, Plenum Publishing Corporation, New York, 1995.
- [8] L.S. Ivashkevich, K.A. Selevich, A.S. Lyakhov, A.F. Selevich, Y.I. Petrusevich, Z. Kristallogr. 217 (2002) 73–77.
- [9] H. Assaaoudi, A. Ennaciri, M. Harcharras, B. El Bali, F. Reinauer, R. Glaum, A. Rulmont, M.-R. Spirlet, Acta Crystallogr. C 58 (2002) i79–i81.

- [10] O.V. Yakubovich, M.S. Dadashov, B.N. Litvin, Soviet physics, Crystallography 33 (1988) 16–19.
- [11] Y. Dumas, J. Lapasset, J. Vicat, Acta Crystallogr. B 36 (1980) 2754–2757.
- [12] A.A. Tahiri, R. Oursanal, M. Lachnar, B. El Bali, M. Bolte, Acta Crystallogr. E 58 (2002) i91–i92.
- [13] M. Harcharras, H. Assaaoudi, A. Ennaciri, G. Mattei, V. D'Orazio, A.G.G. Moliterni, F. Capitelli, J. Solid State Chem. 172 (2003) 160–165.
- [14] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 32 (1999) 115–119.
- [15] G.M. Sheldrick, SHELXL-97. Program for the Refinement of Crystal Structures, University of Gottingen, Germany, 1997.
- [16] D. Kobashi, S. Kohara, J. Yamakawa, A. Kawahara, Acta Crystallogr. C 53 (1997) 1523–1525.
- [17] M. Souhassau, C. Lecomte, R.H. Blessing, Acta Crystallogr. B 48 (1992) 370–376.
- [18] R.D. Shannon, Acta Crystallogr. A 32 (1976) 751-767.
- [19] P. Gilli, V. Bertolasi, V. Ferretti, G. Gilli, J. Am. Chem. Soc. 116 (1994) 909–915.
- [20] V. Bertolasi, L. Pretto, P. Gilli, V. Ferretti, G. Gilli, New. J. Chem. 26 (2002) 1559–1566.
- [21] O. Sarr, L. Diop, Spectrochim. Acta A 43 (1987) 999-1005.
- [22] D.B. Philip, B. Lizbeth, G. Aruldhas, J. Raman Spectrosc. 21 (1990) 523–524.
- [23] M. Harcharras, A. Ennaciri, A. Rulmont, B. Gilbert, Spectrochim. Acta A 53 (1997) 345–352.
- [24] N. Santha, V.U. Nayar, G. Keresztury, Spectrochim. Acta A 49 (1993) 47–52.